14 research outputs found

    The neurophysiological changes associated with motor learning in adults and adolescents

    Get PDF
    One main purpose of this dissertation was to explore how sensorimotor cortical oscillations changed after practicing a novel ankle plantarflexion target matching task. We behaviorally quantified the speed, accuracy, reaction time, velocity, and variability of the participant’s performance of the task, while collecting their neurophysiological responses with magnetoencephalography (MEG). With these data, we assessed how the motor planning and execution stages of movement during a goal directed target matching task changed after practicing a task in typically developing young adults with their non-dominant ankle. We found that the cortical oscillations in the beta frequency range that were sourced from the sensorimotor and occipital cortices were weaker after practice. These individuals also improved behaviorally, with faster speed, greater accuracy, higher velocity, and less variability. The decreased strength likely reflects a more refined motor plan, a reduction in neural resources needed to perform the task, and/or an enhancement of the processes that are involved in the visuomotor transformations that occur prior to the onset of the motor action. The second purpose was to explore how the changes of the sensorimotor cortical oscillations after practicing a novel ankle plantarflexion target matching task differ between adults and adolescents. We assessed these behavioral and neurophysiological changes in a cohort of typically developed adults and adolescents. After practice, all of the participants matched more targets, matched the targets faster, had improved accuracy, faster reaction times, and faster force production. However, the motor performance of the adults exceeded what was seen in the adolescents regardless of practice. In conjunction with the behavioral results, the strength of the beta ERD across the motor planning and execution stages was reduced after practice in the sensorimotor cortices of the adolescents, but was stronger in the adults. These outcomes suggest that there are age-dependent changes in the sensorimotor cortical oscillations after practice, which might be related to familiarity with the motor task. The third purpose was to explore how movement attenuates the somatosensory cortical oscillations and how this attenuation differs in adults and adolescents. We used MEG to address this knowledge gap by applying an electrical stimulation to the tibial nerve as adolescents and adults produced an isometric ankle plantarflexion force, or sat quietly with no motor activity. We found movement-related attenuation of the somatosensory oscillations. Attenuation of the alpha-beta ERS while producing the isometric force was greater in adolescents when compared with adults, while the adults had a greater attenuation of the beta ERD. These results imply that alterations of frequency specific somatosensory cortical oscillations may partly underlie the altered motor performance characteristics seen in adolescents

    Measuring Physiological Responses and Emotional Expression during Treatment of Pediatric Feeding Disorders: A Pilot Study

    Get PDF
    Our study aimed to identify possible associations between measures of physiological and behavioral data in children with feeding disorders during treatment. We found that all children demonstrated an average normal heart rate during the feeding appointments, all children demonstrated a primarily neutral emotion, and that three out of four participants had a brief elevation in heart rate that exceeded the normal range. In the future we would like to further investigate the possible effects of environmental factors at play (i.e., food, electronics) during meals that may correlate with elevations in heart rate.https://digitalcommons.unmc.edu/surp2022/1023/thumbnail.jp

    Detecting aggression in clinical treatment videos

    No full text
    Many clinical spaces are outfitted with centralized video recording systems to monitor patient–client interactions. Considering the increasing interest in video-based machine learning methods, the potential of using these clinical recordings to automate observational data collection is apparent. To explore this, seven patients had videos of their functional assessment and treatment sessions annotated by coders trained by our clinical team. Commonly used clinical software has inherent limitations aligning behavioral and video data, so a custom software tool was employed to address this functionality gap. After developing a Canvas-based coder training course for this tool, a team of six trained coders annotated 82.33 h of data. Two machine learning approaches were considered, where both used a convolutional neural network as a video feature extractor. The first approach used a recurrent network as the classifier on the extracted features and the second used a Transformer architecture. Both models produced promising metrics indicating that the capability of detecting aggression from clinical videos is possible and generalizable. Model performance is directly tied to the feature extractor’s performance on ImageNet, where ConvNeXtXL produced the best performing models. This has applications in automating patient incident response to improve patient and clinician safety and could be directly integrated into existing video management systems for real-time analysis

    Children with cerebral palsy have altered oscillatory activity in the motor and visual cortices during a knee motor task

    No full text
    The neuroimaging literature on cerebral palsy (CP) has predominantly focused on identifying structural aberrations within the white matter (e.g., fiber track integrity), with very few studies examining neural activity within the key networks that serve the production of motor actions. The current investigation used high-density magnetoencephalography to begin to fill this knowledge gap by quantifying the temporal dynamics of the alpha and beta cortical oscillations in children with CP (age=15.5±3 years; GMFCS levels II–III) and typically developing (TD) children (age=14.1±3 years) during a goal-directed isometric target-matching task using the knee joint. Advanced beamforming methods were used to image the cortical oscillations during the movement planning and execution stages. Compared with the TD children, our results showed that the children with CP had stronger alpha and beta event-related desynchronization (ERD) within the primary motor cortices, premotor area, inferior parietal lobule, and inferior frontal gyrus during the motor planning stage. Differences in beta ERD amplitude extended through the motor execution stage within the supplementary motor area and premotor cortices, and a stronger alpha ERD was detected in the anterior cingulate. Interestingly, our results also indicated that alpha and beta oscillations were weaker in the children with CP within the occipital cortices and visual MT area during movement execution. These altered alpha and beta oscillations were accompanied by slower reaction times and substantial target matching errors in the children with CP. We also identified that the strength of the alpha and beta ERDs during the motor planning and execution stages were correlated with the motor performance. Lastly, our regression analyses suggested that the beta ERD within visual areas during motor execution primarily predicted the amount of motor errors. Overall, these data suggest that uncharacteristic alpha and beta oscillations within visuomotor cortical networks play a prominent role in the atypical motor actions exhibited by children with CP. Keywords: Isometric, Lower extremity, Magnetoencephalography, Visio
    corecore